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This article ducribes one of the more important mathematical tech
niques "'sed by cryptanalysts today. It is based on an addre ss 'liven by
the author before the assembled members of the Crypto-MathemaUcal
Institute at thei, ,e'lula, meetin'l in April, 1959.

There are two general mathematical methods of measurements that
are used in almost all the successful cryptanalysis at the National security
Agency. The first is the l, or its companions, the Ii, a. or cross Ie. and
z: log fl When it is appropriate to use any of these formulas - in other
words. when we have a frequency count ofd1fferent kinds of "objects..-the
questions that the cryptanalyst is asking himself generally are: (1) Is
the source of this data a random sampling from a flat universe? Or. less
frequently. (2) Are these samples so similar to each other that they
appear to be merely a larger sample randomly broken into parts? If the
mathematical answer to these questions is in the general direction of
being "yes" (we know that hairline distinctions between "yes" and
"no" answers do not exist) the cryptanalyst would generally be dis
appointed. and would have to start to search elsewhere for whatever
clues he needs to further the solution of his problem. Whenever the
answer tends to look like "no", there is probably a reason - possibly
one that can be ascertained - which caused the distribution of figures
under stUdy to have its apparent causal characteristics.

'The main point we are making is that with a x'type of statistic.
exactly one hypothesis is advanced; namely. that no particular cause
exists to make the data appear unlike a randomly selected sample.

A typical example of the usage of a Ii I.C. would be to spot a cipher
message consisting of a simple substitution of plain text. since we know
that in such a cipher the frequencies of the letters encountered would
reflect the widely different plaintext probabilities. Again. the Ii can be
used just as effectively (if the cipher message is longer by an appropriate
amount) to spot a cyclic polyalphabetic substitution of plain text. (We
would simultaneously discover that we had a polyalphabetic substitution
of plain text. and we'd learn the exact number of alphabets.) There are
of course other examples. too numerous to mention. used daily in our
cryptanalysis. in which the x2 or the S locates the one unusual situation.
separating it from a mass of potential contenders. and thus points the
way to the next (perhaps the final) step in the decipherment of the
message under attack.
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must often be taken into account. particulll.J;'ly when the a priori proba
bilities of the various hypotheses are different from each other. Other
wise we are not obtaining the maximum benefit from its use. For ease
in computation. we at N.S.A. almost always use the logarithms of the
numbers we are dealing with, and hence we arrive lit loq Bayes factors.
which, when multiplied by the a priori odds, form the final odds.

One of the simplest possible illustrations of the effective use of
Bayes factors will now be given. SUppose I exhibit a stretch of twenty
letters, and ask how you can tell whether this Is an English sentence.
or a collection of letters pulled out of a grabbag (where all letters have
equal probabiUties). Your answer would be: "I just look at iV' An
automatic Bayes factor computer which is built inside all human beings
would almost instantly tell you the correct answer. But what is a very
simple problem for a person can become a much more difficult problem
for a computer or for special-purpose cryptanalytic devices. The latter
devices must take the first character in the stretch of twenty, and by
means of a log Bayes factor obtain a figure representing the log odds in
favor of this character's having arisenfrom EngliahpWn text. rather than
from a flat-random collection of letters of the alphabet. Then the device
proceeds in turn to each of the remaining nineteen letters. pulis out a
log Bayes factor for each. adds them all together lthis bein@!_the equiv
alent of multiplying the Bayes factors). and obtains a final score. This
score represents the log odds in favor of hypothesis I (that the characters
are English plain text) over hypothesis IT (that the characters are
random. i.e. equiprobable before they were selected). In this iUustratlon.
we have supposed that each hypothesis had an equal a priori probability.
When we know that this is not so, special allowances therefor must be
made.

Where or how does a computer or special purpose device get 0014
of its log Bayes factors? A log factor for each letter of the alphabet,
A through Z, must be stored in the memory of the computer in advance.
The probability of each of the twenty-six letters of plain text is first
obtained from a large frequency count (at least as large as practicable).
Then each log Bayes factor Ie fOWld by looking up the logarithm of 26
times the probability of the letter in question. IThe multiplier is 26
because there are 26 distinct classes of characters. or letters. in English
plain text.) Now, the computer can easily sum the proper values for all
the letters in a stretch of "putative plain text." Besides the log Bayes
factors. we can compute the size of the expected total score in the
"correct" or "plain text" case, for a stretch of twenty characters, and
the expected Score in the "wrong" or "random" case; and, lf we so
desire, can order the computer to print out the score only if it exceeds
a preassigned threshold. (Normally. of course. we will have other
relevant information printed out along with the score.)

However. this discussion will deal with another method of measure
ment which is often far morepowerful and useful than any of the x: family
of statistical tests. and which also is lnBtrumental in playing a major
part in much olthe successful cryptanalysis of our agency.

The reference is to Bayes' Theorem, which in turn gives rise to what
are known as Bayes factors. Who the original Mr. Bayes was, I do not
know. as his name does not appear in the usual list of famous men.
However, my own private researches lead me to believe that he WB.8 a
brill1s.nt 18th century Irish scholar. The latest edition of Van Nostrand's 
SCientific Encyclopedia. after stating Bayes' Theorem itself. petulantly
remarks.

"When all conditions of the theorem ere fulfilled, there is no objection to it.
The difficultif'!s in applying the theorem depend upon the fact that the a priori
probabilities are not known, and are assumed to be equal in the absence of
other lnowledge ••• However, the theorem has been found to be nnscientific,
to give t'ise to variOM inconsistencies, and to be unnecessary. The modern
theory of testing hypotheses makes no UIIC of it."

In the rest of this article we wUl make Mr. Van Nostrand eat these
very words. For despite the statement just quoted. we bE~Jieve that
Bayes' Theorem is not only useful. but in fact leads to the only correct
formulas for solving a large number of our cryptanalytic problems. inci
dentally, only a handful of mathematicians at N.S.A. know about aU the
ways that Bayes factors can be employed. or how to prepare the formulas
in every case.

As you know, Bayes' Theorem and Bayes factors are scarcely men
tioned in many books on statistics and probability. and in fact one of my
first encoWlters with them arose in connection with a brief Navy paper
I wrote some years ago. in which I spelled it BAYE'S. At that time, we
had a secretary who was very skillful in correcting all our spelling and
punctuating errors. and even in suitably emending the mathematical
formulas in the papers she happened to be typing. The secretary changed
my spelling to BAYES'. but Iwasn'tconvincedthat she was right. Finally.
I dug up an old Navy paper, written during World War IT. wherein Bayes'
Theorem was described. and. - sure enough - it was spelled BAYE'S.
Tbinldng that I was vindicated. I started to read the next sentence. It read.
"It. purpose is to . • . ." Ever since then, we've all agreed that
BAYES' is the correct spelling.

This settled. we can turn to the purpose of Bayes' Theorem; which
is to yield a· Bayes factor. This factor alters the odds in favor of one
hypothesis over another, in view of a given set of "pieces of evidence."
In some usages of the theorem. there are a multiplicity of hypotheses
lnBtead of two. in which cases the Bayes factor can produce the final odds
in favor of anyone of the hypotheses against all the others. Even with a
Bayes factor. however. the a priori odds in favor of each hypothesis

, ,

,.

"

"

F.T.LEAHY JDP 5EekEI DAUNT

TOP SECRET pA liN!. 50
1 rtt

51 .~T



lOP SECRE i DAUI<lT SAYES MARCHES ON

DOCID: 3827006
1. 4. (

.L. 86-36 F,T, LEAHY TOP SECRE I MON i

rHowever. I hadbetter quickly add that correctly
L_p-r-ep-ar-ed=-:w=e=i~g:;:h7ts::-:O:;;f"'3;;2;-,-:0~reven fewer. categories are virtually as accu

rate for practical purposes as the original 5-digit logarithmic factors.
at least in all customary situations. But. the important point is that,
statistically. we never benefit by trying to form weights out of loga
rithmic Bayes factors. let alone by conjuring up weights by some other
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case if the log Bayes factors are not regularly giving us large enough
scores; in other words. not yielding what is referred to as a sufficient
statistical separation between right and wrong answers. This occurs
when some of the right answers fail to reach our preset separating
threshold, while many of the wrong answers exceed this same threshold
and hence are mistaken by the computer for correct answers (in our
illustration. for English plain text). A difficulty of this type is always
aggravated when there is a high ratio of wrong to right cases under
consideration.

There are two remedial steps that can be taken for improving the
acorea. The firat method ia to increaae the number of letters (or
characters), Bay by weighing 40 of them instead of 20. in deriving the
score. The second method is to bring in additional information. which. in
the plain text example. could come from a digraphic instead of a mono
graphic evaluation of the lettera preaent. This involves preparing and
storing 676 log weights instead of the 26 mentioned previously, and hence
may begin to assume practical disadvantages. Caution:Never try to prepare
digraphie log weights unle .. you know e~actly how it's done. And. of course.
trigraphic or polygraphic weights are statistically even stronger than
dlgraphic weights, but are generally not considered because they preaent
grave problema in computer storage, and In the need for accurate prepar
ation of such a large number of weights. This Is an intereating sidelight
on the "inefficiency" of a computer compared with a human being, the
latter having almost instant access to literaUybillions of letter combina
tions and their plausihilities.

Having suggeated two methods for Improving our scores. it is impor
tant to point out that what we cannot do is find another statistic or mathe
matical function that is better than a Bayes factor. In fact, this is a
very important point. A lot of people have been spending a lot of time
trying to do this. At best. a different statistic offered for consideration
in this type of problem can be almost as strong as a Bayes factor.
Later on. however, we will discuss cases where It is impractical to
carry out all the necessary Bayes factor calculations, and therefore
simpler statistics are of neceasity substituted,.--- ---,

In connection with alternative statistics. I

must do in a partic~cf 1 . 4. (d
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process.
I should add, as a footnote to all this. that if our information as to

the probabilities involved happens to be erroneous. then improperly
prepared weights just might work better thancorrectones. In this sense.
3 might turn out to be a better approximation to 7T than 3.1416 In obtaining
the area of a circle provided that we had overestimated Its diameter.
But no one would argue that 3 might be an improved value for 7T in deriving
areas of circles. even though this is actually a true statement under
such circumstances as just described.

Next. we consider the problem of what we

Several noteworthy remarks are now is order. The first is that the , ,
log factors can he rounded off to one or two digit accuracy. even if they
originally were computed with a five-digit log tahle. Then. these rounded
values can be suhjected to any linear transformation, such as multiplying
them all by one arbitrary constant. and adding a second arbitrary
constant to each. When this process has heen completed. the values
obtained are called log weight... or better still, just plain weight,•. It is
easy to see that any set of values (as for example the 26 log factors for
English plain text) can be condensed into a selected number of weights
(say 8 or 32). by making the smallest value 0 and the largest 7 or 31.
as the case may be; aU other values are determined by linear proportion.
The ba.. e of the logarithms we have been using was not mentioned.
because any base Is permissible.

Two interesting observations In connection with weight-making can
now be made. The first is that. for problems analogous to the foregoing.
only weights made by t.~i. proce8. (or which could have been made by this
process) are correct. Weights made by using other methods may range
from being very nearly correct (and hence In practice undoubtedly just
about as useful) to being so distorted that they are not doing half the job
they should he doing. The lesson here is that all weights should be log
weights. which in turn are (at most) rounded off and/or linearly trans
formed log Bayes factors.

The second observation Is that altering the logweights by the process
outlined serves no theoretical purpose whatever. and can only weaken what
would have otherwise been the scores.
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I fully subscribe to I Iassertion that t,he c<:lrr;ststatistic to be
used is not a matter of opinion. I Ithen points out that any diffi
culty in assessing the a priori probabilities (a problem often besetting
the cryptanalyst) casts the same shadow over any statistical method

whatsoever that is being employed~ I adds that even such famous
statisticians as Karl Pearson and KeYnes were either "confusing" or
"confused" in discussing Baye,,~ 'Theorem; and he ends by noting that
some other statisticians have61almed that Bayes weights are useless.
because "problems in which the probabilities can be calculated" do
not occur] ~rtrue this may be in agricultural experimentation.
concludes it is certainly not true in cryptanalysis.

Before going on. I'd like to mention. but not fully discuss. a relatively
minor problem that occasionally arises when establishing "plain text"
probabilities. or the equivalent. which are used in preparing log weights.
Let us suppose that 1000 characters of French telegraphic plain text
have been frequency-counted. with the thought that we can divide each
frequency by 1000 to obtain the approximate probability of the letter in
question. But the sample of 1000 by chance had no letter W which as we
all know is a rather uncommon letter in French. Does this mean that we
assign this letter a probability of zero? The answer is certainly not. as
this would eventually result in a log weight of minus infinity. and this
would mean. to a computer at least. that any stretch of twenty letters
containing a.w (even if it happened to be Je-vais-a-Washingion) could not
be plain text.

This difficulty, when it arises. can be readily taken care of. if not
perhaps strictly solved in a theoretical sense. by Dr. Getchell or hy
myself. among others. for anyone who isn't sure of the best way to
circumvent this apparent obstacle. However. a warning is in order at this
point: To escape from this dilemma it is very definitely not necessary to
laboriously assemble an enormous sample of plaintext from which to
obtain "refined" probabilities. Perhaps we should not mention one
unfortunate case in which a sample of half a million trigraphs were
counted over a period of two years in an utterly futile attempt to obtain
"more accurate" probabilities. to be used for log weights.
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There are many pitfalls to be carefully avoided in the preparation and
use of Bayes factors. For example. if we are trying to line up adjacent
columns in a simple transposition, the methods already described for
recognizing plain text are not applicable at all. For the characters we
are now dealing with are nothing but plaintext letters in their proper
proportions, and the Bayes factors we are going to use must be based
upon the difjraphic plaintext probabilities of the appropriate language.
(We are now. as before, attempting to decide between two hypotheses.)
Having placed two possible columns side by side. do the pairs of adjacent
letters appear to be plaintext digraphs. or do they appear to be two
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separated plaintext characters? The Bayes factor, therefore. tests the
hypothesis that the digraphs were originally together rather than separate.
Such digraphs as EA will have very low transposition-type log weights,
while a digraph like CH will have a high log weight quite dissimilar to our
earlier weights. One set of French transposition log weights, arranged
in order of descending size, was headed by "WY", in fact. Digraphs
made up of very common letters like AN often have a neutral log weight.
The combined weights of all the digraphs in the paired columns naturally
make up the score used to determine whether these particular columns
are in fact adjacent or non-adjacent. In the right case. the columns
must not only be adjacent but must occupy their proper left and ri~ht

relative positions. But anyone who has worked on transpositions knows
that the scores thus obtained, while helpful. by no means afford conclusive
evidence of the pairing or the non-pairing of columns. The relatively
small number of digraphs available for scoring in any given pair of
columns allow false answers rather frequently to attain the same scores
as that of the average right answer.

EO 1.4. Ie!
P.L. 6-36 F.T.LEAHY TOP SEC:K~T OAUI4T

TOp SECRET Co, 't>IT 56
EO 1.4. Ie!
P.L. 86-36

57 ---<tCP SEERH QA IINL



EO 1. 4. (c)
F.L. 86-36

1. 4. [c)

1. 4. (d)
.L. 86-36

F.T. LEAHY lOP S~eKE'f El>\UtH

TOP SECRET Q'c1di"+f 58 59 ..lD~ ~ECRET DAOl'fl



EO 1.4. (
EO 1.4. (
P.L. 86-

F.T. LF:AHY

EO 1.4. (c)
P.L. 86-36

60 61 TOF SElkE i DAON i


